Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants
نویسندگان
چکیده
Introns in a wide range of organisms including plants, animals and fungi are able to increase the expression of the gene that they are contained in. This process of intron-mediated enhancement (IME) is most thoroughly studied in Arabidopsis thaliana, where it has been shown that enhancing introns are typically located near the promoter and are compositionally distinct from downstream introns. In this study, we perform a comprehensive comparative analysis of several sequenced plant genomes. We find that enhancing sequences are conserved in the multi-cellular plants but are either absent or unrecognizable in algae. IME signals are preferentially located towards the 5'-end of first introns but also appear to be enriched in 5'-UTRs and coding regions near the transcription start site. Enhancing introns are found most prominently in genes that are highly expressed in a wide range of tissues. Through site-directed mutagenesis in A. thaliana, we show that IME signals can be inserted or removed from introns to increase or decrease gene expression. Although we do not yet know the specific mechanism of IME, the predicted signals appear to be both functional and highly conserved.
منابع مشابه
Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression.
Introns that elevate mRNA accumulation have been found in a wide range of eukaryotes. However, not all introns affect gene expression, and direct testing is currently the only way to identify stimulatory introns. Our genome-wide analysis in Arabidopsis thaliana revealed that promoter-proximal introns as a group are compositionally distinct from distal introns and that the degree to which an ind...
متن کاملRole for gene looping in intron-mediated enhancement of transcription.
Intron-containing genes are often transcribed more efficiently than nonintronic genes. The effect of introns on transcription of genes is an evolutionarily conserved feature, being exhibited by such diverse organisms as yeast, plants, flies, and mammals. The mechanism of intron-mediated transcriptional activation, however, is not entirely clear. To address this issue, we inserted an intron in I...
متن کاملComparative Analysis of the Exon-Intron Structure in Eukaryotic Genomes
The exon numbers and lengths vary in different eukaryotic species. With increasing completed genomic sequences, it is indispensable to reanalyze the gene organization in diverse eukaryotic genomes. We performed a large-scale comparative analysis of the exon-intron structure in 72 eukaryotic organisms, including plants, fungi and animals. We confirmed that the exon-intron structure varies massiv...
متن کاملCorrection: Role of Intron-Mediated Enhancement on Accumulation of an Arabidopsis NB-LRR Class R-protein that Confers Resistance to Cucumber mosaic virus
The accumulation of RCY1 protein, which is encoded by RESISTANCE TO CMV(Y) (RCY1), a CC-NB-LRR class R-gene, is tightly correlated with the strength of the resistance to a yellow strain of Cucumber mosaic virus [CMV(Y)] in Arabidopsis thaliana. In order to enhance resistance to CMV by overexpression of RCY1, A. thaliana was transformed with intron-less RCY1 cDNA construct under the control of s...
متن کاملLarge-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes.
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011